News blog

FET looks forward following stellar year

FET is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, the world’s leading Nonwovens show at Geneva in April; and ITMA, Milan, the world’s largest international textile and garment technology exhibition in June.


FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. FET had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.


FET wet spinning system selected for major fibre research programme

FET has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.

These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

“We are delighted to be associated with such a prestigious research organisation as the Henry Royce Institute” said FET Managing Director, Richard Slack. “This flagship research programme into future materials reflects FET’s wide experience and commitment to enabling client development of textile fibres made from renewable resources”.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

 


RHEON LABS successfully completes collaboration trials with FET

RHEON LABS has now completed an extensive 6 month trial with FET, backed by a £173,000 grant from Innovate UK for feasibility studies. RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.

This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a ‘breakthrough-generation’ of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

For close-fitting activewear and sports bras, the ability to actively control muscle mass or soft tissue movement during exercise will be a game-changing advancement. It will allow brands to engineer garments that relax during everyday use but actively stiffen during exercise for improved support and performance.

The Innovate UK grant was awarded under the category of Hyper-Viscoelastic Fibre Extrusion for Textile Manufacture. FET enabled the customer trials at its bespoke Fibre Development Centre using its in-house FET-103 Monofilament meltspinning facilities, in harness with RHEON and FET technical operatives. The next phase will be to upscale the trials of preferred materials on RHEON’s own new FET-103 meltspinning line, with FET’s continued support and expertise on hand.

Creating a fibre with unique strain-rate sensitive characteristics could be as radical a change in the market as the initial introduction of stretch fibre with the launch of Lycra™. The textiles would have a multitude of beneficial properties and would provide significantly less compression in the garment than conventional materials, substantially improving user comfort, support and performance.

RHEON LABS is a fast-growing materials technology company based in Battersea, London, and was recently named as one of the top UK tech startups of 2021.


Further successes for FET at Techtextil

FET enjoyed another successful Techtextil in Frankfurt, with high quality enquiries from technical companies and organisations worldwide, but in particular Europe.

Techtextil has always been an excellent fit for FET’s presence and aspirations in the high-end technical textile market. As the leading international trade fair for technical textiles and nonwovens, Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges.

The company’s principle theme at Techtextil was Sustainability, since FET systems are ideally suited for both process and end-product development of sustainable materials. Our innovative stand was designed using as many sustainable components as possible and met with much approval from visitors.

The other main area of focus was FET’s new Fibre Development Centre, which is due to be unveiled in a few weeks’ time.


FET installs new Spunbond system at University of Leeds

FET has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

This FET spunbond system is now an integral part of the research facilities of the CCTMIH (Clothworkers’ Centre for Textile Materials Innovation for Healthcare), led by Prof. Stephen Russell based in the School of Design, University of Leeds, who commented “The new spunbond system is perfectly suited to our academic research work, and is already proving itself to be extremely versatile and intuitive to use”.

This spunbond system complements existing research lab facilities at the university, which covers all areas of fibre and fabric processing, physical testing and characterisation. It forms part of a wider investment in facilities to support fundamental, academic research on ‘future manufacturing’ for medical devices, where the focus is on studying small-scale processing of unconventional polymers and additive mixes to form spunbond fabrics with multifunctional properties.

Key to this research is developing the underlying process-structure-performance relationships, based on the measured data, to provide detailed understanding of how final fabric performance can be controlled during processing.

As a rule, many exciting materials developed in academic research struggle to progress beyond the bench, because of compatibility issues with key manufacturing processes such as spunbond. By leveraging mono, core-sheath and island-in-the-sea bicomponent technology, the Leeds University team is working with polymer and biomaterial research scientists, engineers and clinicians to explore the incorporation of unusual materials in spunbond fabrics, potentially widening applications.


FET hails INDEX20 impact

FET is celebrating a successful INDEX20 nonwovens exhibition in Geneva, Switzerland, which closed on 22 October. Although the company has a long history in supplying meltspinning equipment for the nonwovens sector, this represents its first venture at a dedicated nonwovens show.

FET’s Managing Director, Richard Slack explains. “Techtextil and ITMA have previously been our main exhibitions of choice, but INDEX20 was an ideal vehicle for FET to launch our new laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers.”

FET already has spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions. The growth in global nonwovens technology, partly driven by demand for pandemic-related materials, is forecast to continue.

“We were delighted with the response at INDEX”, continued Richard Slack. “There was considerable interest shown in the new spunbond system and its potential for lab scale innovation. It’s clear that the industry is seeking new alternatives to synthetics at the moment, and our technology is able to assist with the testing and assessment of many of the new feedstocks being pioneered in this extremely inventive sector, where everyone is suddenly talking and cooperating with everyone else, regardless of whether they are generally competitors. We recorded in excess of 20 serious enquiries from totally new contacts and sectors, including blue chip companies in the hygiene, medical and packaging industries.”

“There were initial concerns about projected attendance figures, especially from China and USA companies, but we experienced good footfall from key decision makers, especially those from Europe. It was encouraging to at last experience the opportunity for face-to-face contact with old and new customers on a large scale and we are now starting to reap the benefits with enquiries continuing to flow in”.


Further gains for FET in the Biomedical sector

FET has now delivered nine meltspinning systems to clients in the biomedical sector since the onset of the Covid-19 pandemic, with a similar number currently on order for 2021/22. This confirms FET’s position as an acknowledged world leader in meltspinning equipment for the production of precursor materials used in medical devices and the default supplier for absorbable suture production systems, with orders virtually doubling year on year.

Managing Director Richard Slack emphasised the long term planning and execution that has contributed to success in this industry. “FET has a long tradition in the highly regulated biomedical sector and we believe our experience is unrivalled. We have built a world leading reputation for melt spinning medical grade polymers in both synthetic resorbable and non-absorbable polymers and FET is now reaping the rewards of this initiative”.

Recent installations include a multi-functional system that can produce both multifilament and monofilament pre-cursor fibres, but nonwoven systems have been particularly prominent, driven by the burgeoning demand for FFP3 masks, gowns and other medical products required during the pandemic. These have been sold to medical device manufacturing companies across the globe, including the Far East, USA and Europe. Research organisations have also invested in FET systems for biomedical applications, the most recent being the University of Leeds in a laboratory scale Spunbond system.

The FET in-house Process Development Laboratory and ongoing collaboration with biomaterial polymer suppliers has helped to optimise the biomedical melt spinning technology.


FET in 3-way collaboration project in Indonesia

FET has installed a new FET-100 Series Laboratory Melt Spinning System for continuous filament yarn applications at the Center for Textile, Indonesia. A major ceremony on 18 March commemorated the event, bringing together industrial leaders and Ministry of Industry figures with Mr. Agus Gumiwang Kartasasmita, the Minister of Industry launching the ceremony. FET representatives and the innovation agency BSP were also in attendance.

The Center for Textile, Balai Besar Tekstils of Bandung, has the task of carrying out research, development, cooperation, testing, certification and competency development of the textile sector, under the control of the Ministry of Industry (Kementerian Perindustrian). The Ministry has a stated objective that Indonesia becomes a “Resilient Industrial Country” – strong, competitive and based on innovation and technology.

The FET-100 system will play a vital role in driving technological innovation in the Indonesian textile industry. The nation’s fibre manufacturers now have access to advanced melt spinning facilities for developing and testing their own novel fibres for global applications. This laboratory melt spinning system is multi-polymer capable and can produce both mono and bi-component formats.

This event was streamed online for textile businesses to view during Covid-restricted times and was covered on local television. The Indonesia Textile Association and the Indonesia Synthetic Fiber Manufacturer Association were also involved in promoting the ceremony.


FET new premises to enable expansion drive

FET has now commenced construction of a new purpose-built Research & Development Centre to enable continued growth. This innovative two-storey development will be situated on the adjacent site, providing state-of-the-art facilities, including a Visitor Centre and enhanced Process Development Laboratory (PDL) for client testing and product development.

Clients frequently spend several days on site participating in development trials and technical sales meetings, so the Visitor Centre is designed to make their stay more efficient and comfortable. Sales, administration and design departments will also be housed in the new building.

The addition of the Visitor Centre will free up a considerable amount of space for production and other facilities in the existing premises. This major refurbishment phase for the existing premises is scheduled for completion at the end of 2021. As a result, FET’s manufacturing capacity will increase by more than 50% to cope with customer demand.

Substantial year-on-year growth has driven this initiative and FET’s current order book in excess of £10million has provided the opportunity for equipping the company infrastructure for the future. Sustainability has been at the forefront of FET’s growth, supporting customers in their development of sustainable textiles and this principle is reflected in the choice of building materials and products for the Visitor Centre wherever possible.

It is expected that the new Visitor Centre will be opened in the first quarter of 2022.